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Making use of appropriate quantum-classical correspondence we have examined the differential behavior of
regular and chaotic trajectories in terms of quantum decoherence, the evolution of average quantities, and
variances and entropy in a driven double-well oscillator in contact with the surroundings. Our numerical
analysis has shown that even on a short time scale the decay of the average quantum coherence is multiexpo-
nential. While the onset of decoherence is much faster for a regular trajectory, the decay is faster asymptoti-
cally for a chaotic trajectory compared to a regular one. The coupling of the system to the environment turns
chaotic in a regular evolution. The environment also affects the evolution of quantum variances for a regular
trajectory almost from the beginning, while it has an insignificant effect on chaotic evolution up to a time after
which, for both trajectories, noise in the quantum variances exhibits remarkable suppression, although fluc-
tuations of the reservoir modes, in general, tend to increase the level of variances. We identify three stages of
quantum evolution; a short decoherence regime followed by a Liouville flow, the latter regime being domi-
nated by the classical curvature of the potential. This is the regime at which growth of entropy or quantum
variances is exponential, the rate being determined by the classical largest Lyapunov exponent. The last stage
is the irreversible flow dominated by diffusion which suppresses noises in the quantum variances.@S1063-
651X~96!11305-2#

PACS number~s!: 05.40.1j, 05.45.1b, 03.65.Bz

I. INTRODUCTION

It is well known that the evolution of a quantum system
may be profoundly affected by its surroundings@1–8#. For
this, a low-dimensional dynamical system weakly interacting
with an environment which encompasses a virtually infinite
number of degrees of freedom has been the standard para-
digm in a wide range of physical disciplines, e.g., in chemi-
cal physics, quantum optics, solid state physics, etc. The
problems of activated barrier crossing@9# and dissipative
quantum tunneling@10# are well known examples in this
context. Although effects due to environment on the dynam-
ics are well accounted for in this model, nonlinear features
are suppressed in these treatments because of the traditional
linearized schemes employed to describe the dynamics
within the well or around the barrier top. A nonlinear system
which admits chaotic behavior in the classical version of the
model, and which at the same time is coupled to an environ-
ment, is therefore worthy of investigation for studying the
relationship between classical and quantum evolution. The
coupling of the system with its surroundings induces an ex-
change of energy between them, resulting in a dissipation of
the energy of the system. This was the subject of early stud-
ies of a dissipative standard map and other models by Dit-
trich and Graham and others@2,3#. Also, the incoherent in-
teraction of the system with the environment results in a loss
of phase coherence between the set of preferred quantum
states in the Hilbert space of the system, thereby causing
decoherence and classicality in the quantum system. The
study of this quantum decoherence or interference effect has
proved to be useful in a further analysis of quantum-classical
correspondence by Zurek and Paz@6# ~ZP! in an inverted
harmonic oscillator potential. Although it is integrable in na-
ture, and quantum corrections due to nonlinearity are absent,
the model captures some essential features of decoherence in

relation to quantum evolution around the hyperbolic classical
orbit. The quantum decoherence in circle and stadium bil-
liards has also been the subject of a recent study by Tamesh-
tit and Sipe@7# ~TS!.

It is the purpose of the present paper to examine the dif-
ferential behavior of the chaotic and regular trajectories, and
the quantum-classical correspondence in a truly chaotic sys-
tem ~where the linearization scheme around the stable or
unstable fixed point has not been employed! coupled to an
environment. Since the strength and nature of coupling play
a crucial role in setting the decoherence and its time scale,
we have chosen the high temperature situation of an Ohmic
environment keeping the relaxation rate very small but finite.
The quantum-mechanical description of dissipation by now
constitutes a well developed body of theory@11,12#, and it
can be incorporated without difficulty into the model for cha-
otic dynamics considered by us.

We thus construct a dissipative version of a model-driven
double-well oscillator to study the evolution of a quantum
system in the presence of weak dissipation and strong diffu-
sion of fluctuations from the reservoir modes. We design the
initial conditions in terms of minimum uncertainty wave
packets to maximize the classical quantum correspondence.
We show that the decay of average decoherence as measured
by Tr r2 is multiexponential. While the onset of decoherence
is much faster for a regular trajectory, the decay is faster
asymptotically for the chaotic trajectory compared to the
regular one. The coupling of the system to the environment
turns chaotic evolution into regular evolution, leading to
some kind of weak localization at the barrier top. The envi-
ronment also affects the evolution of quantum variances for a
regular trajectory almost from the beginning while it has an
insignificant effect on chaotic evolution up to a time after
which for both trajectories noise in quantum variances exhib-
its remarkable suppression, although, in general, the fluctua-
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tions of the reservoir modes tend to increase the level of
variances to a significant extent.

Before concluding this section we emphasize some im-
portant points: First, the model employed in the present
study is a generalized version of the model employed for the
quantum Kramer’s problem@9#, where one encounters the
case of an activated barrier crossing. The model can also be
viewed as a generalization of a model that is extensively
used for the problem of dissipative quantum tunneling@10#
which essentially concerns barrier penetration in the pres-
ence of dissipation. For both these problems the model os-
cillator remains undriven, which renders the uncoupled sys-
tem integrable. Second, studies on dissipative chaotic
systems carried out so far were mostly based on maps. The
present treatment is free from the linearization scheme and is
a numerical simulation of this kind on a continuous system
where we do not invoke anyad hocseparation of the time
scale between the population and coherence dynamics, and
take both dissipation and diffusion on an equal footing.
Third, the present numerical experiment should serve to
complement some of the earlier theoretical findings of Zurek
and Paz.

The organization of the paper is as follows: In Sec. II we
introduce the model system coupled to the environment, and
describe its density operator in terms of the master equation
which governs the temporal evolution. In subsequent sec-
tions we present our representative numerical results. In Sec.
III we characterize the coherence of the quantum system in
terms of purity, and then in Sec. IV study the evolution of
the Husimi function and entropy. The evolution of average
quantities has been described in Sec. V. Section VI deals
with quantum variances, and shows how they differ for cha-
otic and regular trajectories. The paper is concluded in Sec.
VII.

II. DISSIPATIVE CHAOTIC DYNAMICS: MODEL AND
MASTER EQUATION

To start with, we consider a classically chaotic system
characterized by a potential

V~x!5ax42bx21gx cos~v0t !,

where the first two terms comprise the double-well oscillator
which is driven by a classical oscillating field as denoted by
the third term.g includes the effect of strength of the field of
frequencyv0 and the coupling. The Hamiltonian for the sys-
tem is given by

H05p2/2m1V~x!, ~1!

where the first term refers to the kinetic energy of the oscil-
lator.

For this classical model@12,13# the parameter values
m51, a50.5,b510.0,g510.0, andv056.07 typically yield
a chaotic zone for the initial conditionx523.5 andp50.0,
and regular trajectories starting fromx522.0 andp50.0 or
x524.224 andp50.0, etc. While the regular trajectories
remain confined in the respective wells, the chaotic trajecto-
ries spread out over the two wells. Classical and quantum-
mechanical studies on this model have been made earlier in
the context of tunneling@13# and barrier crossing@14#.

The bare system is now coupled to an environment mod-
eled by a reservoir of harmonic oscillator modes@11,12#.
With the Hamiltonian of the driven double-well oscillator,
the generator of the quantum dynamics is given by the over-
all Hamiltonian operator for the system and the environment
and their coupling,

Ĥ5Ĥ01\(
i

v i b̂i
†b̂i1\(

i
@k~v i !b̂i1k* ~v i !b̂i

†# x̂,

~2!

wherex̂ and p̂ become position and momentum operators of
the system.b̂i (b̂i

†) denotes the annihilation~creation! opera-
tor of the harmonic oscillator bath modes. The second and
third terms correspond to reservoir modes and their coupling
to the chaotic system. Also note thatk(v i) is a c function.

It is convenient to invoke the rotating wave approxima-
tion, so that one can use a symmetric coupling of the type
(b̂i â

†1b̂i
†â), wherea and a† are annihilation and creation

operators corresponding to the system, respectively, as given
by x51/A2mv(â1â†). v refers to the frequency of the
harmonic oscillator, on the basis of which the quantum cal-
culation is performed as described in the latter part of this
section.

Appropriate elimination of reservoir modes in the usual
way @11,12#, using Born and Markov approximations, leads
us to the following reduced density matrix equation for the
evolution of the system:

dr̂

dt
52~ i /\!@Ĥ0 ,r̂ #1~g/2!~ ââ†r̂22âr̂â†1 r̂â†â!

1D~ â†r̂â1âr̂â†2â†âr̂2 r̂ââ†!. ~3!

Here the spectral density function of the reservoir is re-
placed by a continuous densityg~v!; we denote the Boltz-
mann constant by k, and g.0 is the limit of
2puk(v)u2g(v)/v asv→01 and is assumed to be finite.g is
the relaxation rate,D(5n̄g) is the diffusion coefficient,
and n̄ „5@exp~\v/kT!21#21

… is the average thermal photon
number. In the high temperature limitD>gkT/\v. Terms
analogous to Lamb and Stark shifts have been neglected, and
temperatureT is assumed to be high enough for the Markov
approximation to be valid.

The first term in Eq.~3! which corresponds to the free and
classically driven motion of the oscillator generates the ordi-
nary Liouville flow. The terms containingg arise due to
interaction with the environment. The first of them implies
the relaxation or exchange of energy with the reservoir, and
the last one indicates the diffusion of fluctuations of the res-
ervoir modes into the system of interest. The last term is
responsible for the quantum decoherence process.

To solve Eq.~3! it is convenient to choose as basis vectors
the eigenvectors $un&% of a harmonic oscillator
( p̂2/2m1 1

2mv2x̂2)un&5[n1 1
2\vun&. The frequencyv of

the harmonic oscillator is arbitrary, and it can be adjusted to
economize the basis functions. For the present purpose we
choosev56.25 and\51, and use 120 basis vectors. In this
representation the equation of motion for the reduced density
matrix elements is given by
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drnm
dt

52 i H(
k
Hnkrkm2(

l
rnlHlmJ

1g/2$A~n11!~m11!rn11 m112~n1m!rnm%

1D$A~n11!~m11!rn11 m112~n1m11!rnm%.

~4!

The expression for matrix elementsHmnmay be found in
Ref. @13#. Equation~4! describes the evolution of both popu-
lation ~diagonal elements! and coherences~off-diagonal ele-
ments!. Without resorting to any approximate scheme for
separation of time scales to show their evolution, we carried
out a numerical solution of 1203120 equations for density
matrix elements of the reduced system as a typical initial
value problem. We follow the stroboscopic time scale, i.e.,
the period of driving forceT52p/v0, so thatt5nT.

To bring forth a quantum-classical correspondence, we
construct minimum uncertainty wave packetsuax,p& of a
Gaussian form in position and momentum representations
having average position̂x& and average momentum̂p&,
such that

^ax,pun&5@exp~20.5uau2!#an/An!.

Here we denotea5Amv/2(^x&1( i /mv)^p&) and set the
initial condition for quantum evolution by fixing the average
position and average momentum of the wave packet corre-
sponding to the initial position and momentum of a classical
trajectory.

In our analysis we specifically consider a high tempera-
ture environment. We choose the relaxation rateg to a very
small ~0.001! compared to the diffusion rateD~50.5! by
keepingT large, the relation between the two being given by
D5n̄g. This last relation implies that the average thermal
photon numbern̄5500. In the standard cavity quantum elec-
trodynamic problems@15#, where superconducting high-Q
cavities are used, the average thermal photon number, may,
however, be reduced even several orders of magnitude lower.
In this dynamical problem~which is reminiscent of cavity
QED! one is thus essentially concerned with a number of
competing processes, e.g., the fundamental strong coherent
interaction (g) between the double-well oscillator and the
external classical field~strong coupling being responsible for
chaos in the classical counterpart!, spontaneous decay of os-
cillator ~g!, and the thermal-field-induced stimulated pro-
cesses (D), the latter two processes being treated in the weak
coupling scheme. We thus consider the high temperature en-
vironment in the limitg@D@g. It is well known that most
often in the process of thermalization the temporal evolution
of the density matrix proceeds in two stages. The decoher-
ence occurs in the first stage, which is then followed by
relaxation on a much longer time scale. We have studied
quantum evolution for a number of regular and chaotic tra-
jectories. However, for the sake of brevity here we present
the results of a numerical simulation for typical single regu-
lar and chaotic trajectories. As a numerical check we com-
pared our numerical results with those of Lin and Ballentine
@13# in classical and quantum cases forD50 andg50. An-
other important check for numerical calculations is to keep
Tr r51 for the entire evolution.

Before bringing an end to this section we emphasize that,
although we compare our numerical results with the recent
theoretical finding of ZP wherever possible, it is not com-
pletely within the scope of this theory for the reason that the
model of an inverted harmonic oscillator as employed by ZP,
though it mimics some features of a hyperbolic fixed point, is
integrable, and features due to nonlinearity are absent. In the
absence of any mathematical treatment which goes beyond
the linearization scheme, we think that our numerical obser-
vations as presented in the next few sections will be comple-
mentary to that of the earlier theoretical finding of ZP.

III. QUANTUM DECOHERENCE

The concept of coherence in quantum-mechanical systems
has been advocated in a number of different ways@5,7,8#. If
the system evolves in contact with a thermal reservoir from
an initially pure state, it is convenient to define a measure of
coherence in terms of purity of the state or average coher-
ence as

R~ t ![Tr r̂~ t !2.

If the system is in a pure state, then Trr25Tr r51 orR51.
The loss of purity or mixing impliesR(t),1. Thus we have
0<R<1.

In Figs. 1 and 2 we display the decay of quantum coher-
ence as measured byR(t) as a function of time. It is apparent
that even within a very short time, decoherence proceeds
typically in two stages. Figure 1 depicts the case of a wave
packet which is located atx523.5 andp50.0 ~correspond-
ing to a classically chaotic trajectory!. The multiexponential
decay curve suggests two time scales. The inset in Fig. 1
shows short time behavior, with a rate constant approxi-
mately equal to 1.96, while the long time behavior charac-
terized by a rate constant almost half of that for the short
time scale is shown in Fig. 1~0.96!. Biexponential decay of

FIG. 1. Plot of Trr2 [R(t)] vs time for a chaotic trajectory
starting from^x&523.5 and^p&50.0 ~the exponential curve is the
best fit curve!. The inset shows the onset of decay of Trr2 for the
same trajectory for time up to 0.5.~Both the units are arbitrary.!
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coherence is also apparent for a typical regular trajectory, as
shown in Fig. 2. The inset in Fig. 2 exhibits the fastest time
scale for the initial stage of decoherence~the rate constant
>9.4! which is followed by an order of magnitude slower
decoherence process~the rate constant>0.67!. It is thus in-
teresting to note that the time scale for the onset of decoher-
ence is much faster for a regular rather than for a chaotic
trajectory, although in the latter stage the loss of coherence
proceeds asymptotically at a faster rate for a chaotic trajec-
tory than for a regular one.

It is important to mention at this point that the problem of
decoherence has been studied earlier by ZP@6# and TS@7,8#
in a high temperature Ohmic environment. In the case of
decoherence studied by TS, coupling to the heat bath is of
quantum nondemolition type, implying that the weak pertur-
bation commutes with the system Hamiltonian, and average
coherence was found to decay faster asymptotically in the
chaotic system than in the regular system. This is a direct
result of the repulsion of energy levels in the former case. In
the present case, however, the onset of decoherence is faster
in the regular case, while asymptotic decoherence is faster in
the chaotic case, similar to the case studied by TS. This may
be understood in the following way.

There are two competing processes affecting the evolu-
tion of quantum coherence as measured by Trr2. One is the
Liouville flow, the other is the diffusion. For a chaotic tra-
jectory the Liouville flow is associated with an exponential
expansion in one direction and a contraction along the other
direction, so that a quasiprobability distribution function is
squeezed. Diffusion, on the other hand, which is the main
reason for decoherence, induces a spreading of the wave
packet. This opposes the exponential contraction but has
little effect on the exponential expansion. Thus decoherence
is likely to be more opposed for a chaotic evolution than for
a regular one. This explains the faster onset of decoherence
for a regular evolution, at least in the initial stage before
diffusive growth completely takes over the dynamics.

IV. EVOLUTION OF ENTROPY

Next we consider the evolution of a classical-like distri-
bution corresponding to a Husimi function defined as

P~x,p!51/2p\^ax,pur̂uax,p&,

which provides a coarse-grained phase space smooth on a
scale of\. In Fig. 3~a! we choose the initial stateuax,p&
centered atx522.0, p50.0 ~corresponding to a regular tra-
jectory!. The evolution of the Husimi function at time
t53.06T and 8.26T is shown in Figs. 3~b! and 3~c!, respec-
tively. In contrast to the case of coherent tunneling, the Hu-
simi function spreads rapidly, and shows no sign of recur-
rence. Quantum coherence is thus extremely susceptible to
environmental effects.

To make our analysis of irreversible evolution more quan-
titative, it is useful to calculate the Von Neumann entropyH
of the Gaussian state, which is related to the areas enclosed
by the contour of the Husimi function as defined by

H5k ln~s/\!.

In Fig. 4 we show the evolution of entropy for a regular
~b! and a chaotic trajectory~a!. In sharp contrast to the steady
increase of entropy for the regular trajectory, the chaotic tra-
jectory presents an interesting scenario. At a very early stage
the entropy change remains very small, is then followed by a
sharp increase, and then finally tends to increase at a very
very slow rate. It is interesting to note that Zurek and Paz
advocated the efficacy of studying the evolution of entropy
as a consequence of the interplay between Liouville dynam-
ics with the interaction of a high temperature environment to
examine the differential behaviors of integrable and noninte-
grable systems. In defining entropy ZP used the Wigner
function (W), whereas we preferred to use the Husimi func-
tion.W is not always positive definite~it is therefore neces-
sary to make use of a Gaussian smoothing of the Wigner
function!. The Husimi O’Connell-Wigner function@16# is
positive definite, and for one degree of freedom takes the
following form ~we consider for illustration!:

Ws~x,p!5
1

\p E E dx8dp8W~x8,p8!expF2
^x82x&2

2s2

2
~p82p!2

2b2 G .
Heres andb refer to widths of the Gaussian function. The
Heisenberg principle implies thatbs>\/2. The time evolu-
tion ofWs to lowest order ins andb is given by

]Ws

]t
52

p

m

]

]x
Ws1

]V

]x

]

]p
Ws2

b2

m

]2Ws

]p]x

12s2S ]2V

]x2 D ]2Ws

]x]p
. ~5!

While the first two terms refer to the usual Poisson bracket
term ~classical motion!, the third and fourth terms are due to
Gaussian smoothing. According to O’Connell and Wigner

FIG. 2. Same as Fig. 1 but for a regular trajectory starting from
^x&522.0, ^p&50.0. The exponential curve is the best fit curve.
The inset shows the onset of decay of Trr2 for the same trajectory
for time up to 0.1.~Both the units are arbitrary.!
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@16# this is not, however, a quantum effect. It is evident from
Eq. ~5! that in addition to a momentum variance correspond-
ing to b2 there is as2 effect due to coordinate variance. For
a nonlinear potential, the term]2V/]x2 contributes signifi-
cantly to the spreading of the contour of the Husimi function.
This curvature of the potential,]2V/]x2, which is instrumen-
tal in determining the stability of the trajectory, controls the
spreading of the coarse-grained phase space contour~note
that for ZP this term is a constant!. Thus in addition to the
usual diffusive spreading due to theD term in Eq.~3! of type
D[( ]2/]x2)1(]2/]p2)] we have spreading due to theb2,
s2(]2V/]x2) effect. The increase of entropy~the logarithmic
function of the phase space contour! in the regular case is
thus dependent only on the coupling to the bath, while in the
chaotic case the rapid increase of the entropy is strongly
dependent on the curvature of the potential. Recently we
pointed out@17# that the Lyapunov exponent is related to the
correlation between the fluctuations~due to classical chaos!
of the curvature of the potential in the chaotic case. Since
quantum variances inx andp diverge exponentially for the

chaotic case@18#, and the rate of growth is connected to the
corresponding curvature of the potential and thereby to the
largest classical Lyapunov exponent~see Ref.@19# for de-
tails!, the initial growth of the phase space contour or en-
tropy is exponential in nature. This can be checked simply by
noting the parallel between the rapid growth of entropy and
the uncertainty product~another measure of the increase in
phase volume! ~Figs. 4 and 11!. It is thus apparent that just
as the very early evolution is dominated by decoherence, the
second stage of evolution is significantly influenced by the
classical stability matrix or the curvature of the potential,
and, quantitatively, the onset of entropy is controlled by the
classical largest Lyapunov exponent. In this regime the na-
ture of the trajectory itself~i.e., regular or chaotic! over-
whelms the effect of the surroundings.

V. EVOLUTION OF AVERAGE QUANTITIES

Let us now look at the quantum evolution of average po-
sitions and momenta of the system in terms of a phase-space-

FIG. 3. ~a! Husimi function
corresponding to a regular trajec-
tory peaked at̂x&522.0 and^p&
50.0 at timet50.0. ~Units are ar-
bitrary.! ~b! Same as in~a! at time
t53.06.~c! Same as in~a! at time
t58.26.
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type plot. Figure 5 exhibits the case of a wave packet located
initially at x522.0 andp50.0 ~corresponding to a classical
regular trajectory! when the system is decoupled from the
environment~i.e.,g50.0 andD50.0!. It is apparent that the
trajectory spirals around and moves from one well to the
other. The coupling of the system to the environment~g
50.001 andD50.5! results in an inhibition of passage of the
phase point or in coherent tunneling between the wells. After
a few spirals the phase point settles down around the hyper-
bolic point ~around the barrier top!, as shown in Fig. 6. This
behavior of the phase points is similar to what we observe
for the environment-decoupled system for a chaotic trajec-
tory starting atx523.5 andp50.0 ~Fig. 7!. Here again the
phase points remain largely confined in the vicinity of the
hyperbolic point of the potential. Figure 8 shows the^x&-^p&
plot of the same trajectory for the system coupled to the
environment. It is observed that the same dynamic localiza-

tion at the barrier top persists.
We thus see that on coupling the system to the environ-

ment, whereby we introduce dissipation of energy from the
system as well as diffusion of fluctuations from the reservoir
modes into the system, the behavior of the wave packets
initially localized at the position corresponding to classically
regular or chaotic trajectories is different. We observe that
coherent tunneling pertaining to the regular description is
destroyed, and at the same time coupling turns a regular
evolution chaotic, resulting in some kind of weak localiza-
tion at the barrier top.

We now mention a few pertinent points regarding the no-
tion of localization at this stage. The investigation of Hamil-
tonian systems with infinite-dimensional Hilbert space, e.g.,
the standard map, has revealed that classical chaotic behavior
is suppressed on quantization. The suppression is due to in-
terference effects of the number of modes accessible to the
quantum system@20#. The situation is analogous to strong
localization in tight-binding Hamiltonian systems@21#. This
localization is extremely susceptible to destruction even by

FIG. 4. Plot of entropy vs time. Curve (a) is for chaotic trajec-
tory, and curve (b) is for the regular trajectory mentioned in the
text. ~Units are arbitrary.!

FIG. 5. Plot of the quantum mechanical average position (^x&)
vs quantum mechanical average momentum (^p&) for a regular tra-
jectory starting from^x&522.0 and ^p&50.0 andD50.0 and
g50.0. ~Units are arbitrary.!

FIG. 6. Same as Fig. 5 but forD50.5 andg50.001.

FIG. 7. Same as Fig. 5 but for a chaotic trajectory starting from
^x&523.5 and ^p&50.0 when the system is not coupled to the
environment~D50.0 andg50.0!.
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weak dissipation@2#, resulting in linear diffusion, which is
the hallmark of chaotic behavior, and in the process classi-
cality is restored. Localization at the barrier top of the
double-well potential~undriven and driven by a constant
field! has also been investigated as a stationary quantum
problem@22#. We emphasize here that the dynamic localiza-
tion around the barrier top for the chaotic trajectory for the
system decoupled from the environment, as well as that for
the trajectory coupled to the environment, are similar to what
has been observed recently in an anharmonic driven chaotic
oscillator ~no environment! @23#. In contrast to strong local-
ization, this weak localization@22# is not susceptible to weak
dissipation or diffusion, is similar to what has been observed
as weak localization in disordered systems, and is a manifes-
tation of classical chaos on a time scale which is much
shorter than the asymptotic time scale required to resolve the
quasienergy levels of the system@23,24#. This seems to be an
indication that chaos makes some properties more robust
than expected against the influence of environmental fluctua-
tions.

VI. QUANTUM FLUCTUATIONS

Quantum fluctuations are generic quantum effects. In the
present problem we launched wave packets satisfying the
minimum uncertainty product relationDxDp5\/2. How-
ever, in the course of evolution the uncertainty product var-
ies in time. In Fig. 9 we plot this variation for a regular
trajectory starting atx522.0 andp50.0, when the system is
decoupled~g50.0, andD50.0!, and compare with the situ-
ation where the system is in contact with the heat bath~g
50.001 andD50.5!. Switching on the coupling results in a
large increase in the uncertainty product almost from the
beginning. At almostt>30T the uncertainty product settles
down at a constant value. Although the evolutionary trends
in both cases are more or less similar, a closer look at Figs. 9
and 10 clearly reveals the level of noise in the quantum vari-
ances sharply drops at almost aboutt>11T for the system
coupled to the environment. In Fig. 11 we plot the variation
of the uncertainty product for a chaotic trajectory starting at
x523.5 andp50.0 for the coupled and bare systems. It is
evident that unlike the regular trajectory the difference be-
tween the two situations is very small up to a timet511T,

after which the effect of the environment becomes remark-
able. Along with the increase in the uncertainty as in the
regular case there is a suppression of noise in the quantum
variances. Comparing between the evolution of regular and
chaotic trajectories of the uncoupled system, one also finds
that quantum variances initially grow exponentially for the
chaotic trajectory. This aspect has already been touched upon
in Sec. IV for entropy, and can also be corroborated from
other related investigations on kicked systems@19,18#.

The origin of the differential behavior of quantum fluc-
tuations for regular and chaotic trajectories can be summa-
rized as follows. We first note that, after the decoherence
stage is over, the dynamics is dominated by the Liouville
flow. At this point, as discussed above, parallel with the ob-
servation that chaos creates an experimental growth of intrin-
sic fluctuations in classical systems, one finds that@19# quan-
tum variances initially grow exponentially~this has been

FIG. 8. Same as Fig. 7 but forD50.5 andg50.001. FIG. 9. Plot of the uncertainty product vs time for a regular
trajectory starting from̂x&522.0 and̂ p&50.0. The lower curve is
for the trajectory whenD50.0 andg50.0, and the upper curve is
for the trajectory whenD50.5 andg50.001. ~Both the units are
arbitrary.!

FIG. 10. Same as Fig. 9 but for time up to 20. Curve~a! is for
D50.5 andg50.001, and curve~b! is for D50.0 andg50.0.
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recognized as a generic signature of classical chaos on quan-
tum phenomena! if the corresponding classical description is
chaotic. The growth rate is controlled by fluctuations in the
curvature of the potential, as pointed out above. At this stage
fluctuations in the curvature of the potential dominate the
evolution, which is then followed by an irreversible flow,
where we find the suppression of noise in quantum vari-
ances. This reduction of noise~fluctuations in the quantum
uncertainty! is probably due to damping of higher order
quantum correlations.

Thus it is apparent that the environment affects the evo-
lution of the regular trajectory almost from the beginning,
whereas it has no noticeable effect on a chaotic trajectory up
to a time after which, for both trajectories, noise in the quan-
tum variances exhibits remarkable suppression. In general,
the fluctuations of the reservoir modes tend to increase the
level of uncertainty product.

Finally we mention that although both entropy and uncer-
tainty product are related to the phase space contour, in the
measurement of entropy we use a coarse-grained phase
space. However, such coarse graining is absent in the calcu-
lation of the uncertainty product.

VII. SUMMARY: THREE STAGES OF QUANTUM
EVOLUTION

Using an appropriate quantum-classical correspondence
we have studied the effect of their surroundings on the quan-
tum evolution of the average coherence, entropy, average
quantities, and variances for classically chaotic and regular
trajectories in a driven double-well system. The keypoint in
taking the surrounding into account is to incorporate the
fluctuation-dissipation relation in the Liouville dynamics. Al-
though we have considered a high temperature situation, fi-
nite values ofg andD in the master equation ensure a bal-
ance between the outward energy flux from the system to the

reservoir and the inward energy flux due to fluctuations of
the reservoir modes into the system. Thus in the present
treatment dissipation and diffusion have been treated on an
equal footing. We note in passing that former considerations
on related issues were based on specific limiting cases
@2,6,8#, such asg→0 or D→0.

The high temperature situation has another implication.
The dissipative part of the dynamics expressed through Eq.
~3! is derived on the basis of the coupling of a harmonic
oscillator ~a system! to a reservoir of harmonic oscillators.
The question of its general validity in the master equation
~3!, as applied to a nonlinear oscillator, naturally arises. It
has been demonstrated@25,26# that in the high temperature
situation, the description in terms of the dissipative dynamics
is adequate even when the reservoir is coupled to a nonlinear
oscillator, as in the present case.

To summarize our observations, we have shown that even
on a short time scale the decay of average quantum coher-
ence is multiexponential. While the onset of decoherence is
much faster for a regular trajectory the decay is faster asymp-
totically for a chaotic trajectory compared to a regular one.
An interplay of Liouville dynamics and diffusion is thus
demonstrated. The effect of the surroundings is also sensitive
enough to destroy a coherent tunneling of the wave packet.
At the same time, the coupling of the system to the environ-
ment turns a regular trajectory chaotic, leading to some kind
of weak localization at the barrier top. The environment also
affects the evolution of quantum variances for a regular tra-
jectory almost from the beginning, while it has no noticeable
effect on the chaotic trajectory up to a time after which, for
both trajectories, noise in the quantum variances exhibits a
remarkable suppression, although, in general, the fluctuations
of the reservoir modes tend to increase the level of quantum
variances to a significant extent@27#.

The differential behavior of the quantum evolution for
regular and chaotic trajectories, as summarized above, sug-
gests that one may identify three stages of quantum evolution
as envisaged by Zurek and Paz in their investigation of un-
stable inverted harmonic oscillators. Quantum decoherence
is the first stage of evolution, followed by the Liouville flow,
a regime dominated by the curvature of the classical poten-
tial or the Jacobi matrix. In this regime the growth of entropy
or quantum variances is exponential, the rate being deter-
mined by the classically largest Lyapunov exponent, and the
differential behavior between the regular and chaotic trajec-
tories is likely to be most prominent. The third stage of evo-
lution is the irreversible flow largely dominated by diffusion.
In this regime we observe the suppression of noise in quan-
tum variances for both regular and chaotic trajectories, and
the environment makes its presence felt exclusively. This
observation of the suppression of noise also lends supports to
the earlier assertion that openness in a quantum system in-
duces classicality into it, a conclusion arrived at from differ-
ent standpoints@2,6#. The present attempt is a detailed nu-
merical simulation on this account, although the implications
are too intricate for an immediate analytical treatment. In
view of the prototypical role played by the present model in
several earlier investigations, we hope that the conclusions
drawn here will find qualitative applicability in other prob-
lems of dissipative dynamics in relation to classical and
quantum chaos.

FIG. 11. Same as Fig. 10 but for a chaotic trajectory starting
from ^x&523.5 and ^p&50.0. Curve ~a! is for D50.5 and
g50.001, and curve~b! is for D50.0 andg50.0.
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