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Quantum evolution of a chaotic system in contact with its surroundings
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Making use of appropriate quantum-classical correspondence we have examined the differential behavior of
regular and chaotic trajectories in terms of quantum decoherence, the evolution of average quantities, and
variances and entropy in a driven double-well oscillator in contact with the surroundings. Our numerical
analysis has shown that even on a short time scale the decay of the average quantum coherence is multiexpo-
nential. While the onset of decoherence is much faster for a regular trajectory, the decay is faster asymptoti-
cally for a chaotic trajectory compared to a regular one. The coupling of the system to the environment turns
chaotic in a regular evolution. The environment also affects the evolution of quantum variances for a regular
trajectory almost from the beginning, while it has an insignificant effect on chaotic evolution up to a time after
which, for both trajectories, noise in the quantum variances exhibits remarkable suppression, although fluc-
tuations of the reservoir modes, in general, tend to increase the level of variances. We identify three stages of
guantum evolution; a short decoherence regime followed by a Liouville flow, the latter regime being domi-
nated by the classical curvature of the potential. This is the regime at which growth of entropy or quantum
variances is exponential, the rate being determined by the classical largest Lyapunov exponent. The last stage
is the irreversible flow dominated by diffusion which suppresses noises in the quantum varf&i&3-
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[. INTRODUCTION relation to quantum evolution around the hyperbolic classical
orbit. The quantum decoherence in circle and stadium bil-
It is well known that the evolution of a quantum system liards has also been the subject of a recent study by Tamesh-
may be profoundly affected by its surroundings-8]. For tit and Sipe[7] (TS).
this, a low-dimensional dynamical system weakly interacting It is the purpose of the present paper to examine the dif-
with an environment which encompasses a virtually infiniteferential behavior of the chaotic and regular trajectories, and
number of degrees of freedom has been the standard pardre quantum-classical correspondence in a truly chaotic sys-
digm in a wide range of physical disciplines, e.g., in chemi-tem (where the linearization scheme around the stable or
cal physics, quantum optics, solid state physics, etc. Thenstable fixed point has not been employedupled to an
problems of activated barrier crossifi§] and dissipative environment. Since the strength and nature of coupling play
guantum tunneling10] are well known examples in this a crucial role in setting the decoherence and its time scale,
context. Although effects due to environment on the dynamwe have chosen the high temperature situation of an Ohmic
ics are well accounted for in this model, nonlinear featuresnvironment keeping the relaxation rate very small but finite.
are suppressed in these treatments because of the traditiofdle quantum-mechanical description of dissipation by now
linearized schemes employed to describe the dynamicsonstitutes a well developed body of thediyl,12, and it
within the well or around the barrier top. A nonlinear systemcan be incorporated without difficulty into the model for cha-
which admits chaotic behavior in the classical version of theotic dynamics considered by us.
model, and which at the same time is coupled to an environ- We thus construct a dissipative version of a model-driven
ment, is therefore worthy of investigation for studying the double-well oscillator to study the evolution of a quantum
relationship between classical and quantum evolution. Theystem in the presence of weak dissipation and strong diffu-
coupling of the system with its surroundings induces an exsion of fluctuations from the reservoir modes. We design the
change of energy between them, resulting in a dissipation dhitial conditions in terms of minimum uncertainty wave
the energy of the system. This was the subject of early studpackets to maximize the classical quantum correspondence.
ies of a dissipative standard map and other models by DitWe show that the decay of average decoherence as measured
trich and Graham and othef8,3]. Also, the incoherent in- by Tr p? is multiexponential. While the onset of decoherence
teraction of the system with the environment results in a losgs much faster for a regular trajectory, the decay is faster
of phase coherence between the set of preferred quantuasymptotically for the chaotic trajectory compared to the
states in the Hilbert space of the system, thereby causingegular one. The coupling of the system to the environment
decoherence and classicality in the quantum system. Theirns chaotic evolution into regular evolution, leading to
study of this quantum decoherence or interference effect hasome kind of weak localization at the barrier top. The envi-
proved to be useful in a further analysis of quantum-classicalonment also affects the evolution of quantum variances for a
correspondence by Zurek and P#@] (ZP) in an inverted regular trajectory almost from the beginning while it has an
harmonic oscillator potential. Although it is integrable in na- insignificant effect on chaotic evolution up to a time after
ture, and quantum corrections due to nonlinearity are abseniyhich for both trajectories noise in quantum variances exhib-
the model captures some essential features of decoherenceits remarkable suppression, although, in general, the fluctua-
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tions of the reservoir modes tend to increase the level of The bare system is now coupled to an environment mod-

variances to a significant extent. eled by a reservoir of harmonic oscillator moddd,12.
Before concluding this section we emphasize some imWith the Hamiltonian of the driven double-well oscillator,

portant points: First, the model employed in the presenthe generator of the quantum dynamics is given by the over-

study is a generalized version of the model employed for thell Hamiltonian operator for the system and the environment

guantum Kramer's problerf9], where one encounters the and their coupling,

case of an activated barrier crossing. The model can also be

viewed as a generalization of a model that is extensively . . . .

used for the problem of dissipative quantum tunnelih] H=Ho+#> wiblbi+#2> [K(w)b+k*(w)b1X,

which essentially concerns barrier penetration in the pres- ! ! @)

ence of dissipation. For both these problems the model os-

cillator remains undriven, which renders the uncoupled sys- - R ..
tem integrable. Second, studies on dissipative chaotitVN€rex andp become position and momentum operators of

systems carried out so far were mostly based on maps. THB€ Systemb; (bf) denotes the annihilatiofereation opera-

present treatment is free from the linearization scheme and t§" of the harmonic oscillator bath modes. The second and

a numerical simulation of this kind on a continuous systemthird terms correspond to reservoir modes and their coupling

where we do not invoke angd hocseparation of the time 0 the chaotic system. Also note thtw;) is ac function.

scale between the population and coherence dynamics, and It is convenient to invoke the rotating wave approxima-

take both dissipation and diffusion on an equal footing.tion, so that one can use a symmetric coupling of the type

Third, the present numerical experiment should serve t¢bia'+b/a), wherea anda' are annihilation and creation

complement some of the earlier theoretical findings of Zurekoperators corresponding to the system, respectively, as given

and Paz. by x=1/\2mw(a+a'"). o refers to the frequency of the
The organization of the paper is as follows: In Sec. Il weharmonic oscillator, on the basis of which the quantum cal-

introduce the model system coupled to the environment, andulation is performed as described in the latter part of this

describe its density operator in terms of the master equatiosection.

which governs the temporal evolution. In subsequent sec- Appropriate elimination of reservoir modes in the usual

tions we present our representative numerical results. In Seway [11,12), using Born and Markov approximations, leads

Il we characterize the coherence of the quantum system ins to the following reduced density matrix equation for the

terms of purity, and then in Sec. IV study the evolution of evolution of the system:

the Husimi function and entropy. The evolution of average

quantities has been described in Sec. V. Section VI deals (5 .

with quantum variances, and shows how they differ for cha- ==~ (il)[Hg,pl+ (y/2)(ad'p—2apa’+ pata)

otic and regular trajectories. The paper is concluded in Sec.

VIL. +D(a'pa+apa’atap—paah). ©)
Il. DISSIPATIVE CHAOTIC DYNAMICS: MODEL AND Here the spectral density function of the reservoir is re-
MASTER EQUATION placed by a continuous densitfw); we denote the Boltz-

; ; ; - mann constant byk, and y>0 is the limit of
ch;r(;cit::ir;evc\j"t&/ ;v%ociggﬁfler a classically chaotic SystequT|k(w)|zg_(w)/a) aSw—>0_+an_d is assqmeq to be fin.ity.is
the relaxation rateD(=ny) is the diffusion coefficient,
V(x)=ax*—bx2+ gx cod wgt), andn (=[exphw/kT)—1]"1) is the average thermal photon
number. In the high temperature linfiit= ykT/%iw. Terms
where the first two terms comprise the double-well oscillatoranalogous to Lamb and Stark shifts have been neglected, and
which is driven by a classical oscillating field as denoted bytemperaturdl” is assumed to be high enough for the Markov
the third termg includes the effect of strength of the field of @Ppproximation to be valid.

frequencyw, and the coupling. The Hamiltonian for the sys-  The first term in Eq(3) which corresponds to the free and
tem is given by classically driven motion of the oscillator generates the ordi-

nary Liouville flow. The terms containing arise due to
Ho=p?/2m+V(x), (1) interaction with the environment. The first of them implies
the relaxation or exchange of energy with the reservoir, and
where the first term refers to the kinetic energy of the oscilthe last one indicates the diffusion of fluctuations of the res-

lator. ervoir modes into the system of interest. The last term is
For this classical mode[12,13 the parameter values responsible for the quantum decoherence process.
m=1,a=0.5,b=10.0,0=10.0, andw,=6.07 typically yield To solve Eq(3) it is convenient to choose as basis vectors

a chaotic zone for the initial condition=—3.5 andp=0.0, the eigenvectors {|[n)} of a harmonic oscillator
and regular trajectories starting fraxs=—2.0 andp=0.0 or  (p%2m+ imw?%?)|n)=[n+ 2% w|n). The frequencyw of
x=-—4.224 andp=0.0, etc. While the regular trajectories the harmonic oscillator is arbitrary, and it can be adjusted to
remain confined in the respective wells, the chaotic trajectoeconomize the basis functions. For the present purpose we
ries spread out over the two wells. Classical and quantumehoosew=6.25 andfi=1, and use 120 basis vectors. In this
mechanical studies on this model have been made earlier iepresentation the equation of motion for the reduced density
the context of tunnelingi13] and barrier crossinfil4]. matrix elements is given by
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dp ] 0.60 1 ] 1 i 1 1 1 1 i ] i 1 1 1 1 1 i i 1
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+7/2{V(n+1)(m+1)9n+1 m+1_(n+m)pnm}
+D{(n+1)(M+D)ppiq1 me1— (N+FmM+21)p,mt. 0.40
4

The expression for matrix elemertits,,, may be found in
Ref.[13]. Equation(4) describes the evolution of both popu-
lation (diagonal elemenjsand coherence®ff-diagonal ele-
ments. Without resorting to any approximate scheme for
separation of time scales to show their evolution, we carried
out a numerical solution of 120120 equations for density
matrix elements of the reduced system as a typical initial
value problem. We follow the stroboscopic time scale, i.e., O'OOO O(I)l T '1"é(')' Tt HZIEISC‘J‘ rrr 'é‘éc‘)' ‘
the period of driving forcel =2m/w,, so thatt=nT. ) ) . )

To bring forth a quantum-classical correspondence, we T‘ME
construct minimum uncertainty wave packétsx,p) of a
Gaussian form in position and momentum representations giG. 1. Plot of Trp? [R(t)] vs time for a chaotic trajectory
having average positiofx) and average momentulp),  starting from(x)=—3.5 and(p)=0.0 (the exponential curve is the
such that best fit curvé. The inset shows the onset of decay ofp?rfor the

(axyp|n>=[exq—0.ﬂa|2)]a”/ \/m same trajectory for time up to 0.8Both the units are arbitrary.

TN
4
0.5
oz

0.20

PR TR T TN T U T OO U U N U N O T O WY I O O I

TIT T T T T T T T T T T I T TP 1T i1 Tt rrerrrry

Before bringing an end to this section we emphasize that,

Here we denotex=\mw/2((x)+ (i/mw)(p)) and set the although we compare our numerical results with the recent
initial condition for quantum evolution by fixing the average theoretical finding of ZP wherever possible, it is not com-
position and average momentum of the wave packet correpletely within the scope of this theory for the reason that the
sponding to the initial position and momentum of a classicaimodel of an inverted harmonic oscillator as employed by ZP,
trajectory. though it mimics some features of a hyperbolic fixed point, is

In our analysis we specifically consider a high temperaintegrable, and features due to nonlinearity are absent. In the
ture environment. We choose the relaxation rate a very  absence of any mathematical treatment which goes beyond
small (0.001) compared to the diffusion rat®(=0.5 by the linearization scheme, we think that our numerical obser-
keepingT large, the relation between the two being given byvations as presented in the next few sections will be comple-
D=nvy. This last relation implies that the average thermalmentary to that of the earlier theoretical finding of ZP.
photon numben=500. In the standard cavity quantum elec-
trodynamic problemg15], where superconducting higD- IIl. QUANTUM DECOHERENCE
cavities are used, the average thermal photon number, may,
however, be reduced even several orders of magnitude lower. The concept of coherence in quantum-mechanical systems
In this dynamical problemwhich is reminiscent of cavity has been advocated in a number of different wi&yg,g. If
QED) one is thus essentially concerned with a number othe system evolves in contact with a thermal reservoir from
competing processes, e.g., the fundamental strong coheredi initially pure state, it is convenient to define a measure of
interaction @) between the double-well oscillator and the coherence in terms of purity of the state or average coher-
external classical fielstrong coupling being responsible for ence as
chaos in the classical counterpagpontaneous decay of os-
cillator (), and the thermal-field-induced stimulated pro- R(t)=Tr p(t)2.
cessesD), the latter two processes being treated in the weak
coupling scheme. We thus consider the high temperature efi the system is in a pure state, then gfe=Tr p=1 or R=1.
vironment in the limitg>D>y. It is well known that most The loss of purity or mixing implie®(t)<1. Thus we have
often in the process of thermalization the temporal evolutiorD<=R=<1.
of the density matrix proceeds in two stages. The decoher- In Figs. 1 and 2 we display the decay of quantum coher-
ence occurs in the first stage, which is then followed byence as measured B(t) as a function of time. It is apparent
relaxation on a much longer time scale. We have studiedhat even within a very short time, decoherence proceeds
guantum evolution for a number of regular and chaotic tratypically in two stages. Figure 1 depicts the case of a wave
jectories. However, for the sake of brevity here we presenpacket which is located at=—3.5 andp=0.0 (correspond-
the results of a numerical simulation for typical single regu-ing to a classically chaotic trajectgryThe multiexponential
lar and chaotic trajectories. As a numerical check we comeecay curve suggests two time scales. The inset in Fig. 1
pared our numerical results with those of Lin and Ballentineshows short time behavior, with a rate constant approxi-
[13] in classical and quantum cases =0 andy=0. An-  mately equal to 1.96, while the long time behavior charac-
other important check for numerical calculations is to keeperized by a rate constant almost half of that for the short
Tr p=1 for the entire evolution. time scale is shown in Fig. (0.96). Biexponential decay of
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0.60 4+—+—+At bt IV. EVOLUTION OF ENTROPY

1.0

Next we consider the evolution of a classical-like distri-
bution corresponding to a Husimi function defined as

0.40 P(x,p)= 112w ay p|p| ay p),

which provides a coarse-grained phase space smooth on a
scale off. In Fig. 3a we choose the initial statbaxlp>
centered ak=—2.0, p=0.0 (corresponding to a regular tra-
jectory). The evolution of the Husimi function at time
t=3.06T and 8.24 is shown in Figs. &) and 3c), respec-
tively. In contrast to the case of coherent tunneling, the Hu-
simi function spreads rapidly, and shows no sign of recur-
rence. Quantum coherence is thus extremely susceptible to
O‘OO Illll!lll|l||ll|l||]l|lll||ll enVIronmentaleffeCts'

0.00 1.00 2.00 3.00 To make our analysis of irreversible evolution more quan-

TIM E titative, it is useful to calculate the Von Neumann entrépy
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0.20

T U Y W T T U U0 O 0 O O I A A

TTT T T T T i T T TIrrT T rrrrrrrrrrrrTrord

by the contour of the Husimi function as defined by
FIG. 2. Same as Fig. 1 but for a regular trajectory starting from

(x)=-2.0, (p)=0.0. The exponential curve is the best fit curve. H=k In(a/h).
The inset shows the onset of decay ofgfifor the same trajectory
for time up to 0.1(Both the units are arbitrary. In Fig. 4 we show the evolution of entropy for a regular

) ) . (b) and a chaotic trajectorgn). In sharp contrast to the steady
coherence is also apparent for a typical regular trajectory, 8§ crease of entropy for the regular trajectory, the chaotic tra-

shown in Fig. 2. The inset in Fig. 2 exhibits the fastest timejectory presents an interesting scenario. At a very early stage
scale for the initial stage of decoherengkee rate constant o entropy change remains very small, is then followed by a

=9.4) which is followed by an order of magnitude slower ghar increase, and then finally tends to increase at a very
decoherence procesthe rate constar#0.67). Itis thus in-  yery slow rate. It is interesting to note that Zurek and Paz

teresti_ng to note that the time scale for the onset of decc’he_%idvocated the efficacy of studying the evolution of entropy
ence is much faster for a regular rather than for a chaotigg 5 consequence of the interplay between Liouville dynam-
trajectory, although in the latter stage the loss of coherencgg yith the interaction of a high temperature environment to
proceeds asymptotically at a faster rate for a chaotic trajeéGsyamine the differential behaviors of integrable and noninte-
tory Fhan for a regular one. ) ) grable systems. In defining entropy ZP used the Wigner
It is important to mention at this point that the problem of §,ction (W), whereas we preferred to use the Husimi func-

decoherence has been studied earlier by&@rand TS[7,8] oy w is not always positive definitét is therefore neces-

in a high temperature Ohmic environment. In the case Ofsary to make use of a Gaussian smoothing of the Wigner

decoherence studied by TS, coupling to the heat bath is q{nctior). The Husimi O’Connell-Wigner functioril6] is
quantum nondemolition type, implying that the weak pertur-positive definite, and for one degree of freedom takes the
bation commutes with the system Hamiltonian, and averagg,|iowing form (we consider for illustration

coherence was found to decay faster asymptotically in the

chaotic system than in the regular system. This is a direct

result of the repulsion of energy levels in the former case. In y, (x,p) = i f f dx’'dp’W(x' p’)ex;{—
the present case, however, the onset of decoherence is faster ° hr '

in the regular case, while asymptotic decoherence is faster in , 2

the chaotic case, similar to the case studied by TS. This may _ u}

be understood in the following way. 2p°

There are two competing processes affecting the evolu-

tion of quantum coherence as measured by?TOne is the Here o and g8 refer to widths of the Gaussian function. The

Liouville flow, the other is the diffusion. For a chaotic tra- F1€iSenberg principle implies th@lo=#/2. The time evolu-

jectory the Liouville flow is associated with an exponential ion Of W; to lowest order ins and 8 is given by
expansion in one direction and a contraction along the other

(X' =%)?
20°

direction, so that a quasiprobability distribution function is AW p 4 NV B? PWg
squeezed. Diffusion, on the other hand, which is the main ot mox st X dp S m dpax

reason for decoherence, induces a spreading of the wave

packet. This opposes the exponential contraction but has 5 9V #*Ws

little effect on the exponential expansion. Thus decoherence teo Y axaop’ )

is likely to be more opposed for a chaotic evolution than for

a regular one. This explains the faster onset of decoherend®hile the first two terms refer to the usual Poisson bracket
for a regular evolution, at least in the initial stage beforeterm (classical motiojy the third and fourth terms are due to
diffusive growth completely takes over the dynamics. Gaussian smoothing. According to O'Connell and Wigner
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[16] this is not, however, a quantum effect. It is evident fromchaotic cas¢18], and the rate of growth is connected to the
Eq. (5) that in addition to a momentum variance correspond-corresponding curvature of the potential and thereby to the
ing to B° there is ao” effect due to coordinate variance. For largest classical Lyapunov exponeisee Ref[19] for de-

a nonlinear potential, the ter@?V/dx? contributes signifi- tails), the initial growth of the phase space contour or en-
cantly to the spreading of the contour of the Husimi function.tropy is exponential in nature. This can be checked simply by
This curvature of the potentiad?V//9x?, which is instrumen-  noting the parallel between the rapid growth of entropy and
tal in determining the stability of the trajectory, controls the the uncertainty produdianother measure of the increase in
spreading of the coarse-grained phase space cofbmie phase volume(Figs. 4 and 11 It is thus apparent that just
that for ZP this term is a constanfThus in addition to the as the very early evolution is dominated by decoherence, the
usual diffusive spreading due to tBeterm in Eq.(3) of type  second stage of evolution is significantly influenced by the
D[(0%9x%) + (5% 9p?)] we have spreading due to th&?,  classical stability matrix or the curvature of the potential,
a“(9°V1x?) effect. The increase of entrogthe logarithmic ~ and, quantitatively, the onset of entropy is controlled by the
function of the phase space contpim the regular case is classical largest Lyapunov exponent. In this regime the na-
thus dependent only on the coupling to the bath, while in thd@ure of the trajectory itselfi.e., regular or chaotjcover-
chaotic case the rapid increase of the entropy is stronglywhelms the effect of the surroundings.

dependent on the curvature of the potential. Recently we
pointed ouf17] that the Lyapunov exponent is related to the
correlation between the fluctuatiofdue to classical chaps

of the curvature of the potential in the chaotic case. Since Let us now look at the quantum evolution of average po-
guantum variances ir and p diverge exponentially for the sitions and momenta of the system in terms of a phase-space-

V. EVOLUTION OF AVERAGE QUANTITIES
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FIG. 4. Plot of entropy vs time. Curvey] is for chaotic trajec- FIG. 6. Same as Fig. 5 but f@=0.5 andy=0.001.

tory, and curve ) is for the regular trajectory mentioned in the

text. (Units are arbitrary. tion at the barrier top persists.

We thus see that on coupling the system to the environ-
type plot. Figure 5 exhibits the case of a wave packet locatechent, whereby we introduce dissipation of energy from the
initially at x=—2.0 andp=0.0 (corresponding to a classical system as well as diffusion of fluctuations from the reservoir
regular trajectory when the system is decoupled from the modes into the system, the behavior of the wave packets
environment(i.e., y=0.0 andD =0.0). It is apparent that the initially localized at the position corresponding to classically
trajectory spirals around and moves from one well to theregular or chaotic trajectories is different. We observe that
other. The coupling of the system to the environmépt coherent tunneling pertaining to the regular description is
=0.001 andD =0.5) results in an inhibition of passage of the destroyed, and at the same time coupling turns a regular
phase point or in coherent tunneling between the wells. Afteevolution chaotic, resulting in some kind of weak localiza-
a few spirals the phase point settles down around the hypetion at the barrier top.
bolic point(around the barrier tgpas shown in Fig. 6. This We now mention a few pertinent points regarding the no-
behavior of the phase points is similar to what we observeion of localization at this stage. The investigation of Hamil-
for the environment-decoupled system for a chaotic trajectonian systems with infinite-dimensional Hilbert space, e.g.,
tory starting atx=—3.5 andp=0.0 (Fig. 7). Here again the the standard map, has revealed that classical chaotic behavior
phase points remain largely confined in the vicinity of theis suppressed on quantization. The suppression is due to in-
hyperbolic point of the potential. Figure 8 shows {¢-(p)  terference effects of the number of modes accessible to the
plot of the same trajectory for the system coupled to thequantum systeni20]. The situation is analogous to strong
environment. It is observed that the same dynamic localizalocalization in tight-binding Hamiltonian systemi21]. This

localization is extremely susceptible to destruction even by
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FIG. 5. Plot of the quantum mechanical average posit{cf)(
vs quantum mechanical average momentypy) for a regular tra- FIG. 7. Same as Fig. 5 but for a chaotic trajectory starting from
jectory starting from(x)=-2.0 and(p)=0.0 andD=0.0 and (x)=-3.5 and(p)=0.0 when the system is not coupled to the
v=0.0. (Units are arbitrary. environment(D=0.0 andy=0.0).
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FIG. 8. Same as Fig. 7 but f@=0.5 andy=0.001. FIG. 9. Plot of the uncertainty product vs time for a regular

weak dissipatior[2], resulting in linear diffusion, which is trajectory starting frongx)=—2.0 and(p)=0.0. The lower curve is
the hallmark of chaotic behavior, and in the process classir the trajectory wherb =0.0 andy=0.0, and the upper curve is
cality is restored. Localization at the barrier top of thefor the trajectory wherD=0.5 andy=0.001. (Both the units are
double-well potential(undriven and driven by a constant aoitrary)

field) has also been investigated as a stationary quantum . .
problem[22]. We emphasize here that the dynamic localiza-after which th? effect _Of the environment bec_omes re_mark-
tion around the barrier top for the chaotic trajectory for theable' Along with th_e Increase in the uncertainty as in the
system decoupled from the environment, as well as that fo;egplar case there IS a suppression of NOISe N the quantum
the trajectory coupled to the environment, are similar to what/&'ances. 'Comparlng between the evolution of regular and
has been observed recently in an anharmonic driven chaot aotic trajectories of th’? y_ncoupled system, one also finds
oscillator (no environment[23]. In contrast to strong local- that q_uantgm variances initially grow exponentially for the
ization, this weak localizatiof22] is not susceptible to weak chaotic trajectory. This aspect has already been touched upon
dissipation or diffusion, is similar to what has been observed” Sec. IV for. entrqpy,_and can_also be corroborated from
as weak localization in disordered systems, and is a manife§’-ther rela.te'd |nvest|ga_t|0ns on kicked §yste{r119,1a.

tation of classical chaos on a time scale which is much T_he origin of the dlfferent|a_l beh_awor_of quantum fluc-
shorter than the asymptotic time scale required to resolve thig'ations for regular anq chaotic trajectories can be summa-
guasienergy levels of the syst¢@8,24. This seems to be an rized as follows. We fwst_notg that,_after the decoherence
indication that chaos makes some properties more robujfage is over, the dynamics is dominated by the Liouville

than expected against the influence of environmental fluctud-0"V: At this point, as discussed abov_e, parallel with th? Op'
tions. servation that chaos creates an experimental growth of intrin-

sic fluctuations in classical systems, one finds fhét quan-
VI. QUANTUM FLUCTUATIONS tum variances initially grow exponentiallgthis has been

Quantum fluctuations are generic quantum effects. In the
present problem we launched wave packets satisfying the
minimum uncertainty product relatiodxAp=7#/2. How-
ever, in the course of evolution the uncertainty product var-
ies in time. In Fig. 9 we plot this variation for a regular

S
o
o
(@]

trajectory starting at=—2.0 andp=0.0, when the system is 30.00 (o)
decoupledy=0.0, andD =0.0), and compare with the situ-

ation where the system is in contact with the heat Hath

=0.001 andD =0.5). Switching on the coupling results in a

large increase in the uncertainty product almost from the ()

beginning. At almost=30T the uncertainty product settles
down at a constant value. Although the evolutionary trends
in both cases are more or less similar, a closer look at Figs. 9
and 10 clearly reveals the level of noise in the quantum vari-
ances sharply drops at almost abost11T for the system T T
coupled to the environment. In Fig. 11 we plot the variation 5.00  10.00  15.00 20.00

of the uncertainty product for a chaotic trajectory starting at TIME

x=-—3.5 andp=0.0 for the coupled and bare systems. It is

evident that unlike the regular trajectory the difference be- FIG. 10. Same as Fig. 9 but for time up to 20. Cutsgis for
tween the two situations is very small up to a titrel1T, D=0.5 andy=0.001, and curveb) is for D=0.0 andy=0.0.

©
o
o

NN AN ENINRENAUNERANENRNEN NN

UNCERTAINTY PRODUCT

©
o
S

o
o
o



53 QUANTUM EVOLUTION OF A CHAOTIC SYSTEM IN CONTACT ... 5823

reservoir and the inward energy flux due to fluctuations of
(a) the reservoir modes into the system. Thus in the present
treatment dissipation and diffusion have been treated on an
equal footing. We note in passing that former considerations
(b) on related issues were based on specific limiting cases
[2,6,8], such asy—0 or D—O.
The high temperature situation has another implication.
The dissipative part of the dynamics expressed through Eg.
(3) is derived on the basis of the coupling of a harmonic
oscillator (a system to a reservoir of harmonic oscillators.
The question of its general validity in the master equation
(3), as applied to a nonlinear oscillator, naturally arises. It
has been demonstrat¢#ls,26 that in the high temperature
situation, the description in terms of the dissipative dynamics
" 500 10.00 15.00 20.00 is adequate even when the reservoir is coupled to a nonlinear
TIME oscillator, as in the present case.
To summarize our observations, we have shown that even
on a short time scale the decay of average quantum coher-
FIG. 11. Same as Fig. 10 but for a chaotic trajectory startingence is multiexponential. While the onset of decoherence is
from (x)=-3.5 and(p)=0.0. Curve (a) is for D=0.5 and much faster for a regular trajectory the decay is faster asymp-
y=0.001, and curveb) is for D=0.0 andy=0.0. totically for a chaotic trajectory compared to a regular one.
An interplay of Liouville dynamics and diffusion is thus
flemonstrated. The effect of the surroundings is also sensitive
enough to destroy a coherent tunneling of the wave packet.
At the same time, the coupling of the system to the environ-

chaotic. The growth rgte s conFrolled by fluctuations. in thement turns a regular trajectory chaotic, leading to some kind
curvature of the potential, as pointed out above. At this Sta08¢ weak localization at the barrier top. The environment also

fluctua}tlons in thg curvature of the potef}tlal dor_nmate thexffects the evolution of quantum variances for a regular tra-
evolution, which is then followed by an irreversible flow, jectory almost from the beginning, while it has no noticeable
where we find the_ suppression of noise In quantum Vvarleffect on the chaotic trajectory up to a time after which, for
ances. This reduction of noigéluctuations in the quantum poth trajectories, noise in the quantum variances exhibits a
uncertainty is probably due to damping of higher order remarkable suppression, although, in general, the fluctuations
quantum correlations. of the reservoir modes tend to increase the level of quantum
Thus it is apparent that the environment affects the evovariances to a significant extef7].
lution of the regular trajectory almost from the beginning, The differential behavior of the quantum evolution for
whereas it has no noticeable effect on a chaotic trajectory upegular and chaotic trajectories, as summarized above, sug-
to a time after which, for both trajectories, noise in the quan-gests that one may identify three stages of quantum evolution
tum variances exhibits remarkable suppression. In generaks envisaged by Zurek and Paz in their investigation of un-
the fluctuations of the reservoir modes tend to increase thetable inverted harmonic oscillators. Quantum decoherence
level of uncertainty product. is the first stage of evolution, followed by the Liouville flow,
Finally we mention that although both entropy and uncer-2 regime dominated by the curvature of the classical poten-
tainty product are related to the phase space contour, in tHél or the Jacobi matrix. In this regime the growth of entropy
measurement of entropy we use a coarse-grained phaSé guantum variances is exponential, the rate being deter-

space. However, such coarse graining is absent in the calcflined by the classically largest Lyapunov exponent, and the
lation of the uncertainty product differential behavior between the regular and chaotic trajec-

tories is likely to be most prominent. The third stage of evo-
lution is the irreversible flow largely dominated by diffusion.
In this regime we observe the suppression of noise in quan-
tum variances for both regular and chaotic trajectories, and
the environment makes its presence felt exclusively. This
observation of the suppression of noise also lends supports to
Using an appropriate quantum-classical correspondenc@e earlier assertion that openness in a quantum system in-
we have studied the effect of their surroundings on the quanduces classicality into it, a conclusion arrived at from differ-
tum evolution of the average coherence, entropy, averagent standpoint$2,6]. The present attempt is a detailed nu-
quantities, and variances for classically chaotic and regulamerical simulation on this account, although the implications
trajectories in a driven double-well system. The keypoint inare too intricate for an immediate analytical treatment. In
taking the surrounding into account is to incorporate theview of the prototypical role played by the present model in
fluctuation-dissipation relation in the Liouville dynamics. Al- several earlier investigations, we hope that the conclusions
though we have considered a high temperature situation, fdrawn here will find qualitative applicability in other prob-
nite values ofy andD in the master equation ensure a bal-lems of dissipative dynamics in relation to classical and
ance between the outward energy flux from the system to thguantum chaos.

[ (o]
S S
(@] o
(o) (@)

©
e}
a)

tre v ey by b v vy i e e b

UNCERTAINTY PRODUCT

©
(]
o

o
o

recognized as a generic signature of classical chaos on qu
tum phenomenaif the corresponding classical description is

VIl. SUMMARY: THREE STAGES OF QUANTUM
EVOLUTION
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